HEFAISTOS Project: Template factsheet

Inspirations:

https://www.epa.gov/npdes/industrial-stormwater-fact-sheet-series

https://www.europarl.europa.eu/erpl-app-public/factsheets/pdf/en/FTU_2.4.5.pdf

https://setis.ec.europa.eu/system/files/2021-

02/jrc120570 decarbonisation of cement fact sheet 2.pdf

Technology Data for Industrial Process Heat

Writing guidelines

- Straight to the point
- Each fact sheet should support itself independently from the handbook and report, and independently from each other so some boxes can be the same (i.e. regulation ones).
- 6-9 pages
- Main messages clearly visible

Name of the technology

- Energy vector
- Investment risk
- Technology maturity
- Decarbonation potential

Process description

A clear explanation of the steps involved in the industrial process, including inputs, outputs, type, and key transformations. Don't hesitate to bring here some schemas.

- Basic working principle.
- What are the necessary infrastructures?
- What are the synergies with other technologies?
- Technical description:
 - o TRL
 - o Heat Generation Capacity (MWth),
 - O Typical Load Range (% of nominal),
 - o COP / Efficiency (% or COP)
 - o Technical Lifetime (years).
- If possible: Key components, main applications. When is it getting to TRL 9? What are the process conditions? Water use (m3/MWhth if applicable), Hazardous materials used, Safety issues, Environmental impacts (beyond GHG), Land use (m2/MW).

Barriers	Enablers
High capital intensity / long asset lifetimes	Policy and regulation support
E.g. existing plants still far from depreciation, making retrofits or replacements costly.	Carbon pricing, subsidies, carbon border adjustment mechanisms (CBAM), mandates.
Lack of regulatory incentives	Industry initiatives and collaboration
Weak or inconsistent carbon pricing, absence of green procurement policies.	Sectoral alliances, innovation hubs, cross-sector partnerships.
Technological immaturity or uncertainty	Availability of mature low-carbon technologies
Low TRL (Technology Readiness Level) of decarbonization solutions for this sector.	E.g. electrification, energy efficiency measures, renewable integration.
Limited infrastructure	Access to green finance / investment incentives
> Lack of access to renewable electricity, hydrogen	Green bonds, ESG-linked loans, tax credits.
networks, CO₂ transport/storage, etc.	Public acceptance and consumer demand for greener products
Skills gap	Opportunities for co-benefits
Lack of trained workforce for emerging technologies.	Improved energy efficiency, digitalization, cost savings,
Market structure and competitiveness concerns	reduced local pollution.
Exposure to international competition from regions with looser climate constraints.	(Make distinction, if possible, between federal and EU level)
Supply chain bottlenecks or raw material constraints	,
E.g. scarcity of critical minerals, dependence on fossil feedstocks.	

Applicable sectors	Economic Aspects and investment risks
Where this technology could be used, in which sector and/or process and why (high heat demand, hard to abate sector, easier to implement for technical reasons) When it will be applicable in the sector?)	Information about the economic significance of the process, including production volumes, costs, and market trends.
Regulation maturity and fit	Reference projects
Directives and RFNBOs. Omnibus directive? Clean industrial act.	Plant Name, Country / Location, Year Commissioned, Main Performance Data (capacity, efficiency, temperature, etc.)
Key conclusion of the scenarios	
Results from TIMES, sensitivity analysis. If possible, link with grid stability.	
Sources and References and Data Confidence Level	